enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  3. ITP method - Wikipedia

    en.wikipedia.org/wiki/ITP_Method

    In numerical analysis, the ITP method, short for Interpolate Truncate and Project, is the first root-finding algorithm that achieves the superlinear convergence of the secant method [1] while retaining the optimal [2] worst-case performance of the bisection method. [3]

  4. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  5. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    Root finding implements the newer TOMS748, a more modern and efficient algorithm than Brent's original, at TOMS748, and Boost.Math rooting finding that uses TOMS748 internally with examples. The Optim.jl package implements the algorithm in Julia (programming language)

  6. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    Many iterative square root algorithms require an initial seed value. The seed must be a non-zero positive number; it should be between 1 and , the number whose square root is desired, because the square root must be in that range. If the seed is far away from the root, the algorithm will require more iterations.

  7. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    If x is a simple root of the polynomial , then Laguerre's method converges cubically whenever the initial guess, , is close enough to the root . On the other hand, when x 1 {\displaystyle \ x_{1}\ } is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...

  8. Broyden's method - Wikipedia

    en.wikipedia.org/wiki/Broyden's_method

    Schubert's or sparse Broyden algorithm – a modification for sparse Jacobian matrices. [10] The Pulay approach, often used in density functional theory. [11] [12] A limited memory method by Srivastava for the root finding problem which only uses a few recent iterations. [13] Klement (2014) – uses fewer iterations to solve some systems. [14] [15]

  9. Halley's method - Wikipedia

    en.wikipedia.org/wiki/Halley's_method

    In numerical analysis, Halley's method is a root-finding algorithm used for functions of one real variable with a continuous second derivative. Edmond Halley was an English mathematician and astronomer who introduced the method now called by his name. The algorithm is second in the class of Householder's methods, after Newton's method.