Search results
Results from the WOW.Com Content Network
Solute atoms should have a smaller radius than 59% of the radius of solvent atoms. [5] [6] The solute and solvent should have similar electronegativity. [7] Valency factor: two elements should have the same valence. The greater the difference in valence between solute and solvent atoms, the lower the solubility.
The propensity for any two substances to form a solid solution is a complicated matter involving the chemical, crystallographic, and quantum properties of the substances in question. Substitutional solid solutions, in accordance with the Hume-Rothery rules, may form if the solute and solvent have: Similar atomic radii (15% or less difference)
Making a saline water solution by dissolving table salt in water.The salt is the solute and the water the solvent. In chemistry, a solution is defined by IUPAC as "A liquid or solid phase containing more than one substance, when for convenience one (or more) substance, which is called the solvent, is treated differently from the other substances, which are called solutes.
In thermal equilibrium, each phase (i.e. liquid, solid etc.) of physical matter comes to an end at a transitional point, or spatial interface, called a phase boundary, due to the immiscibility of the matter with the matter on the other side of the boundary. This immiscibility is due to at least one difference between the two substances ...
A bond that involves the sharing of electron pairs between atoms. The stable balance of attractive and repulsive forces that occurs between atoms when they share electrons is known as covalent bonding. A diatomic hydrogen molecule, H 2 (right), is formed by a covalent bond when two single hydrogen atoms share two electrons between them ...
The interface between matter and air, or matter and vacuum, is called a surface, and studied in surface science. In thermal equilibrium, the regions in contact are called phases, and the interface is called a phase boundary. An example for an interface out of equilibrium is the grain boundary in polycrystalline matter.
A solution's pH can also greatly affect surface charge because functional groups present on the surface of particles can often contain oxygen or nitrogen, two atoms which can be protonated or deprotonated to become charged. Thus, as the concentration of hydrogen ions changes, so does the surface charge of the particles.
Covalent and ionic bonding form a continuum, with ionic character increasing with increasing difference in the electronegativity of the participating atoms. Covalent bonding corresponds to sharing of a pair of electrons between two atoms of essentially equal electronegativity (for example, C–C and C–H bonds in aliphatic hydrocarbons).