enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Slip (vehicle dynamics) - Wikipedia

    en.wikipedia.org/wiki/Slip_(vehicle_dynamics)

    In (automotive) vehicle dynamics, slip is the relative motion between a tire and the road surface it is moving on. This slip can be generated either by the tire's rotational speed being greater or less than the free-rolling speed (usually described as percent slip), or by the tire's plane of rotation being at an angle to its direction of motion (referred to as slip angle).

  3. Slip ratio - Wikipedia

    en.wikipedia.org/wiki/Slip_ratio

    Slip ratio is a means of calculating and expressing the slipping behavior of the wheel of an automobile.It is of fundamental importance in the field of vehicle dynamics, as it allows to understand the relationship between the deformation of the tire and the longitudinal forces (i.e. the forces responsible for forward acceleration and braking) acting upon it.

  4. Stiffness - Wikipedia

    en.wikipedia.org/wiki/Stiffness

    Stiffness is the extent to which an object resists deformation in response to an applied force. [ 1 ] The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is.

  5. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  6. Cornering force - Wikipedia

    en.wikipedia.org/wiki/Cornering_force

    'Deflected' tread path, sideslip velocity and slip angle Graph of cornering force vs slip angle. Cornering force or side force is the lateral (i.e., parallel to wheel axis) force produced by a vehicle tire during cornering. [1] Cornering force is generated by tire slip and is proportional to slip angle at low slip angles.

  7. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    Elastic constants are specific parameters that quantify the stiffness of a material in response to applied stresses and are fundamental in defining the elastic properties of materials. These constants form the elements of the stiffness matrix in tensor notation, which relates stress to strain through linear equations in anisotropic materials.

  8. Infinitesimal strain theory - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal_strain_theory

    In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller (indeed, infinitesimally smaller) than any relevant dimension of the body; so that its geometry and the constitutive properties of the material (such as density and stiffness ...

  9. Specific modulus - Wikipedia

    en.wikipedia.org/wiki/Specific_modulus

    Approximate specific stiffness for various materials. No attempt is made to correct for materials whose stiffness varies with their density. Material Young's modulus Density (g/cm 3) Young's modulus per density; specific stiffness (10 6 m 2 s −2) Young's modulus per density squared (10 3 m 5 kg −1 s −2) Young's modulus per density cubed ...