Search results
Results from the WOW.Com Content Network
Mark V. Shaney is a third-order Markov chain program, and a Markov text generator. It ingests the sample text (the Tao Te Ching, or the posts of a Usenet group) and creates a massive list of every sequence of three successive words (triplet) which occurs in the text. It then chooses two words at random, and looks for a word which follows those ...
Dissociated press is a parody generator (a computer program that generates nonsensical text). The generated text is based on another text using the Markov chain technique. The name is a play on "Associated Press" and the psychological term dissociation (although word salad is more typical of conditions like aphasia and schizophrenia – which is, however, frequently confused with dissociative ...
Mark V. Shaney is a synthetic Usenet user whose postings in the net.singles newsgroups were generated by Markov chain techniques, based on text from other postings. The username is a play on the words "Markov chain". Many readers were fooled into thinking that the quirky, sometimes uncannily topical posts were written by a real person.
This category is for articles about the theory of Markov chains and processes, and associated processes. See Category:Markov models for models for specific applications that make use of Markov processes.
Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.
Markov chains with generator matrices or block matrices of this form are called M/G/1 type Markov chains, [13] a term coined by Marcel F. Neuts. [ 14 ] [ 15 ] An M/G/1 queue has a stationary distribution if and only if the traffic intensity ρ = λ E ( G ) {\displaystyle \rho =\lambda \mathbb {E} (G)} is less than 1, in which case the unique ...
Markov published his first paper on the topic in 1906, [27] [28] and analyzed the pattern of vowels and consonants in the novel Eugeny Onegin using Markov chains. Once a Markov chain is learned on a text corpus , it can then be used as a probabilistic text generator.
In his first paper on Markov chains, published in 1906, Markov showed that under certain conditions the average outcomes of the Markov chain would converge to a fixed vector of values, so proving a weak law of large numbers without the independence assumption, [296] [297] [298] which had been commonly regarded as a requirement for such ...