enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way". [1] The ANOVA tests the null hypothesis, which states that samples in all groups are drawn from populations with the same mean values. To do this, two estimates are made of the population variance.

  3. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures (such as the "variation" among and between groups) used to analyze the differences between groups. It uses F-test by comparing variance between groups and taking noise, or assumed normal distribution of group, into consideration by ...

  4. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    The formula for the one-way ANOVA F-test statistic is =, or =. The "explained variance", or "between-group variability" is = (¯ ¯) / where ¯ denotes the sample mean in the i-th group, is the number of observations in the i-th group, ¯ denotes the overall mean of the data, and denotes the number of groups.

  5. Van der Waerden test - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waerden_test

    The one factor model can be thought of as a generalization of the two sample t-test. That is, the two sample t-test is a test of the hypothesis that two population means are equal. The one factor ANOVA tests the hypothesis that k population means are equal. The standard ANOVA assumes that the errors (i.e., residuals) are normally distributed.

  6. ANOVA on ranks - Wikipedia

    en.wikipedia.org/wiki/ANOVA_on_ranks

    In statistics, one purpose for the analysis of variance (ANOVA) is to analyze differences in means between groups. The test statistic, F, assumes independence of observations, homogeneous variances, and population normality. ANOVA on ranks is a statistic designed for situations when the normality assumption has been violated.

  7. Location test - Wikipedia

    en.wikipedia.org/wiki/Location_test

    t-test: Not normal Mann–Whitney U or Wilcoxon rank-sum test: Paired N ≥ 30 paired t-test: N < 30 Normally distributed paired t-test: Not normal Wilcoxon signed-rank test: 3 or more groups Independent Normally distributed 1 factor One way anova: ≥ 2 factors two or other anova: Not normal Kruskal–Wallis one-way analysis of variance by ...

  8. Mixed-design analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Mixed-design_analysis_of...

    In statistics, a mixed-design analysis of variance model, also known as a split-plot ANOVA, is used to test for differences between two or more independent groups ...

  9. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    Omnibus tests are a kind of statistical test. They test whether the explained variance in a set of data is significantly greater than the unexplained variance, overall. One example is the F-test in the analysis of variance. There can be legitimate significant effects within a model even if the omnibus test is not significant.