Search results
Results from the WOW.Com Content Network
ATP is often called a high energy compound and its phosphoanhydride bonds are referred to as high-energy bonds. There is nothing special about the bonds themselves. They are high-energy bonds in the sense that free energy is released when they are hydrolyzed, for the reasons given above. Lipmann’s term "high-energy bond" and his symbol ~P ...
Since orthophosphoric acid has three −OH groups, it can esterify with one, two, or three alcohol molecules to form a mono-, di-, or triester. See the general structure image of an ortho- (or mono-) phosphate ester below on the left, where any of the R groups can be a hydrogen or an organic radical. Di- and tripoly- (or tri-) phosphate esters ...
In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid, a.k.a. phosphoric acid H 3 PO 4. The phosphate or orthophosphate ion [PO 4] 3− is derived from phosphoric acid by the removal of three protons H +.
Diagram of phosphodiester bonds (PO 3− 4) between three nucleotides. The 5' end has a 5' carbon attached to a phosphate, and the other end, the 3' end, has a 3' carbon attached to a hydroxyl group. The 5' end has a 5' carbon attached to a phosphate, and the other end, the 3' end, has a 3' carbon attached to a hydroxyl group.
Structure of ATP Structure of ADP Four possible resonance structures for inorganic phosphate. ATP hydrolysis is the catabolic reaction process by which chemical energy that has been stored in the high-energy phosphoanhydride bonds in adenosine triphosphate (ATP) is released after splitting these bonds, for example in muscles, by producing work in the form of mechanical energy.
A phosphoryl group is a trivalent >P(=O)− group, consisting of a phosphorus atom (symbol P) and an oxygen atom (symbol O), where the three free valencies are on the phosphorus atom. While commonly depicted as possessing a double bond (P=O) the bonding is in fact non-classical.
The nitrogenous base is linked to the 1’ carbon through a glycosidic bond, and the phosphate groups are covalently linked to the 5’ carbon. [13] The first phosphate group linked to the sugar is termed the α-phosphate, the second is the β-phosphate, and the third is the γ-phosphate; these are linked to one another by two phosphoanhydride ...
The pKa's occur in two distinct ranges because deprotonations occur on separate phosphate groups. For comparison with the p K a 's for phosphoric acid are 2.14, 7.20, and 12.37. At physiological pH 's, pyrophosphate exists as a mixture of doubly and singly protonated forms.