Search results
Results from the WOW.Com Content Network
In mechanics and physics, shock is a sudden acceleration caused, for example, by impact, drop, kick, earthquake, or explosion. Shock is a transient physical excitation. Shock describes matter subject to extreme rates of force with respect to time. Shock is a vector that has units of an acceleration (rate of change of velocity).
In aerodynamics, the normal shock tables are a series of tabulated data listing the various properties before and after the occurrence of a normal shock wave. [1] With a given upstream Mach number , the post-shock Mach number can be calculated along with the pressure , density , temperature , and stagnation pressure ratios.
Similarly, the rate of flow of electrical charge, that is, the electric current, through an electrical resistor is proportional to the difference in voltage measured across the resistor. More generally, the hydraulic head may be taken as the analog of voltage, and Ohm's law is then analogous to Darcy's law which relates hydraulic head to the ...
A Shock Response Spectrum (SRS) [1] is a graphical representation of a shock, or any other transient acceleration input, in terms of how a Single Degree Of Freedom (SDOF) system (like a mass on a spring) would respond to that input. The horizontal axis shows the natural frequency of a hypothetical SDOF, and the vertical axis shows the peak ...
For a given Mach number, M 1, and corner angle, θ, the oblique shock angle, β, and the downstream Mach number, M 2, can be calculated. Unlike after a normal shock where M 2 must always be less than 1, in oblique shock M 2 can be supersonic (weak shock wave) or subsonic (strong shock wave). Weak solutions are often observed in flow geometries ...
A 2008 review paper written by Philips researcher Clemens J. M. Lasance notes that: "Although there is an analogy between heat flow by conduction (Fourier's law) and the flow of an electric current (Ohm’s law), the corresponding physical properties of thermal conductivity and electrical conductivity conspire to make the behavior of heat flow ...
A schematic diagram of a shock wave situation with the density , velocity , and temperature indicated for each region.. The Rankine–Hugoniot conditions, also referred to as Rankine–Hugoniot jump conditions or Rankine–Hugoniot relations, describe the relationship between the states on both sides of a shock wave or a combustion wave (deflagration or detonation) in a one-dimensional flow in ...
In the power systems analysis field of electrical engineering, a per-unit system is the expression of system quantities as fractions of a defined base unit quantity. . Calculations are simplified because quantities expressed as per-unit do not change when they are referred from one side of a transformer to t