Search results
Results from the WOW.Com Content Network
In prime factorization, the multiplicity of a prime factor is its -adic valuation.For example, the prime factorization of the integer 60 is . 60 = 2 × 2 × 3 × 5, the multiplicity of the prime factor 2 is 2, while the multiplicity of each of the prime factors 3 and 5 is 1.
This extended multiplicity function is commonly called simply the multiplicity function, and suffices for defining multisets when the universe containing the elements has been fixed. This multiplicity function is a generalization of the indicator function of a subset , and shares some properties with it.
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1]
It is easy to find situations for which Newton's method oscillates endlessly between two distinct values. For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x-axis at 1 and that the tangent line to f at 1 intersects the x-axis at 0. [17]
The secant method is an iterative numerical method for finding a zero of a function ... it has multiplicity ... return x ** 2-612 root = secant_method (f_example, 10 ...
Since r 1 has multiplicity k, the differential equation can be factored into [1] = The fact that y p (x) = c 1 e r 1 x is one solution allows one to presume that the general solution may be of the form y(x) = u(x)e r 1 x, where u(x) is a function to be
In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and = () whenever a and b are coprime.. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.
In the mathematical theory of automorphic representations, a multiplicity-one theorem is a result about the representation theory of an adelic reductive algebraic group. The multiplicity in question is the number of times a given abstract group representation is realised in a certain space, of square-integrable functions , given in a concrete way.