Search results
Results from the WOW.Com Content Network
For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root. The notion of multiplicity is important to be able to count correctly without specifying exceptions (for example, double roots counted twice). Hence the expression, "counted with multiplicity".
Over the ensuing decades, many procedures were developed to address the problem. In 1996, the first international conference on multiple comparison procedures took place in Tel Aviv. [3] This is an active research area with work being done by, for example Emmanuel Candès and Vladimir Vovk.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
This extended multiplicity function is commonly called simply the multiplicity function, and suffices for defining multisets when the universe containing the elements has been fixed. This multiplicity function is a generalization of the indicator function of a subset , and shares some properties with it.
For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context is the marginal cost of the ...
In mathematics, Serre's multiplicity conjectures, named after Jean-Pierre Serre, are certain problems in commutative algebra, motivated by the needs of algebraic geometry. Since André Weil 's initial definition of intersection numbers , around 1949, there had been a question of how to provide a more flexible and computable theory, which Serre ...
In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and = () whenever a and b are coprime.. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.