Search results
Results from the WOW.Com Content Network
For example, the prime factorization of the integer 60 is 60 = 2 × 2 × 3 × 5, the multiplicity of the prime factor 2 is 2, while the multiplicity of each of the prime factors 3 and 5 is 1. Thus, 60 has four prime factors allowing for multiplicities, but only three distinct prime factors.
In number theory, the p-adic valuation or p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n.It is denoted ().Equivalently, () is the exponent to which appears in the prime factorization of .
These three multiplicities define three multisets of eigenvalues, which may be all different: Let A be a n × n matrix in Jordan normal form that has a single eigenvalue. Its multiplicity is n, its multiplicity as a root of the minimal polynomial is the size of the largest Jordan block, and its geometric multiplicity is the number of Jordan blocks.
In mathematics, the persistence of a number is the number of times one must apply a given operation to an integer before reaching a fixed point at which the operation no longer alters the number. Usually, this involves additive or multiplicative persistence of a non-negative integer, which is how often one has to replace the number by the sum ...
For example, the function f(x) = x 20 − 1 has a root at 1. Since f ′(1) ≠ 0 and f is smooth, it is known that any Newton iteration convergent to 1 will converge quadratically. However, if initialized at 0.5, the first few iterates of Newton's method are approximately 26214, 24904, 23658, 22476, decreasing slowly, with only the 200th ...
The intersection number arises in the study of fixed points, which can be cleverly defined as intersections of function graphs with a diagonals. Calculating the intersection numbers at the fixed points counts the fixed points with multiplicity, and leads to the Lefschetz fixed-point theorem in quantitative form.
In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and = () whenever a and b are coprime.. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.
The first row shows the possible p-values as a function of the number of blue and red dots in the sample. Although the 30 samples were all simulated under the null, one of the resulting p-values is small enough to produce a false rejection at the typical level 0.05 in the absence of correction.