Search results
Results from the WOW.Com Content Network
The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H 2 O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH −.
Acetic acid is extremely soluble in water, but most of the compound dissolves into molecules, rendering it a weak electrolyte. Weak bases and weak acids are generally weak electrolytes. In an aqueous solution there will be some CH 3 COOH and some CH 3 COO − and H +.
The degree of dissociation α (also known as degree of ionization), is a way of representing the strength of an acid. It is defined as the ratio of the number of ionized molecules and the number of molecules dissolved in water. It can be represented as a decimal number or as a percentage.
The water molecule is amphoteric in aqueous solution. It can either gain a proton to form a hydronium ion H 3 O +, or else lose a proton to form a hydroxide ion OH −. [5] Another possibility is the molecular autoionization reaction between two water molecules, in which one water molecule acts as an acid and another as a base.
A weak base is a base that, upon dissolution in water, does not dissociate completely, so that the resulting aqueous solution contains only a small proportion of hydroxide ions and the concerned basic radical, and a large proportion of undissociated molecules of the base.
Strong bases hydrolyze in water almost completely, resulting in the leveling effect." [7] In this process, the water molecule combines with a strong base, due to the water's amphoteric ability; and, a hydroxide ion is released. [7] Very strong bases can even deprotonate very weakly acidic C–H groups in the absence of water.
Acids and bases are aqueous solutions, as part of their Arrhenius definitions. [1] An example of an Arrhenius acid is hydrogen chloride (HCl) because of its dissociation of the hydrogen ion when dissolved in water. Sodium hydroxide (NaOH) is an Arrhenius base because it dissociates the hydroxide ion when it is dissolved in water. [3]
The solvent (e.g. water) is omitted from this expression when its concentration is effectively unchanged by the process of acid dissociation. The strength of a weak acid can be quantified in terms of a dissociation constant , K a {\displaystyle K_{a}} , defined as follows, where [ H ] {\displaystyle {\ce {[H]}}} signifies the concentration of a ...