Search results
Results from the WOW.Com Content Network
The tensors are classified according to their type (n, m), where n is the number of contravariant indices, m is the number of covariant indices, and n + m gives the total order of the tensor. For example, a bilinear form is the same thing as a (0, 2)-tensor; an inner product is an example of a (0, 2)-tensor, but not all (0, 2)-tensors are inner ...
In machine learning, the term tensor informally refers to two different concepts for organizing and representing data. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector space.
In mathematics and physics, a tensor field is a function assigning a tensor to each point of a region of a mathematical space (typically a Euclidean space or manifold) or of the physical space. Tensor fields are used in differential geometry , algebraic geometry , general relativity , in the analysis of stress and strain in material object, and ...
A simple tensor (also called a tensor of rank one, elementary tensor or decomposable tensor [1]) is a tensor that can be written as a product of tensors of the form = where a, b, ..., d are nonzero and in V or V ∗ – that is, if the tensor is nonzero and completely factorizable. Every tensor can be expressed as a sum of simple tensors.
For example, the Hom functor is of the type C op × C → Set. It can be seen as a functor in two arguments; it is contravariant in one argument, covariant in the other. A multifunctor is a generalization of the functor concept to n variables. So, for example, a bifunctor is a multifunctor with n = 2.
The rank of a tensor is the minimum number of rank-one tensor that must be summed to obtain the tensor. A rank-one tensor may be defined as expressible as the outer product of the number of nonzero vectors needed to obtain the correct order. Dyadic tensor A dyadic tensor is a tensor of order two, and may be represented as a square matrix.
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.
A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):