Search results
Results from the WOW.Com Content Network
Introduction to Topological Manifolds, Springer-Verlag, Graduate Texts in Mathematics 2000, 2nd edition 2011 [5] Lee, John M. (2012). Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771.
It is common to place additional requirements on topological manifolds. In particular, many authors define them to be paracompact [3] or second-countable. [2] In the remainder of this article a manifold will mean a topological manifold. An n-manifold will mean a topological manifold such that every point has a neighborhood homeomorphic to R n.
A map is a local diffeomorphism if and only if it is a smooth immersion (smooth local embedding) and an open map.. The inverse function theorem implies that a smooth map : is a local diffeomorphism if and only if the derivative: is a linear isomorphism for all points .
In mathematics, differential topology is the field dealing with the topological properties and smooth properties [a] of smooth manifolds.In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape.
In topology, a branch of mathematics, a collar neighbourhood of a manifold with boundary is a neighbourhood of its boundary that has the same structure as [,).. Formally if is a differentiable manifold with boundary, is a collar neighbourhood of whenever there is a diffeomorphism: [,) such that for every , (,) =.
Let M be a topological space.A chart (U, φ) on M consists of an open subset U of M, and a homeomorphism φ from U to an open subset of some Euclidean space R n.Somewhat informally, one may refer to a chart φ : U → R n, meaning that the image of φ is an open subset of R n, and that φ is a homeomorphism onto its image; in the usage of some authors, this may instead mean that φ : U → R n ...
Manifolds in contemporary mathematics come in a number of types. These include: smooth manifolds, which are basic in calculus in several variables, mathematical analysis and differential geometry; piecewise-linear manifolds; topological manifolds. There are also related classes, such as homology manifolds and orbifolds, that resemble manifolds.
In differential geometry, in the category of differentiable manifolds, a fibered manifold is a surjective submersion: that is, a surjective differentiable mapping such that at each point the tangent mapping : is surjective, or, equivalently, its rank equals . [1]