Search results
Results from the WOW.Com Content Network
Rubidium bromide is an inorganic compound with the chemical formula Rb Br. It is a salt of hydrogen bromide. It consists of bromide anions Br − and rubidium cations Rb +. It has a NaCl crystal structure, with a lattice constant of 685 picometres. [1] There are several methods for synthesising rubidium bromide.
These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger ...
The solution is called "bromine water". The hydrolysis of bromine is more favorable in the presence of base, for example sodium hydroxide: Br 2 + NaOH → NaOBr + NaBr. This reaction is analogous to the production of bleach, where chlorine is dissolved in the presence of sodium hydroxide. [6]
Hydrogen bonds link the cation and anions. [13] The hydrated form of aluminium chloride has an octahedral molecular geometry, with the central aluminium ion surrounded by six water ligand molecules. Being coordinatively saturated, the hydrate is of little value as a catalyst in Friedel-Crafts alkylation and related reactions.
Rubidium chloride is the chemical compound with the formula RbCl. This alkali metal halide salt is composed of rubidium and chlorine , and finds diverse uses ranging from electrochemistry to molecular biology .
Carbon–halogen bond strengths, or bond dissociation energies are of 115, 83.7, 72.1, and 57.6 kcal/mol for bonded to fluorine, chlorine, bromine, or iodine, respectively. [3] The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications ...
The alkali metals are among the most electropositive elements on the periodic table and thus tend to bond ionically to the most electronegative elements on the periodic table, the halogens (fluorine, chlorine, bromine, iodine, and astatine), forming salts known as the alkali metal halides. The reaction is very vigorous and can sometimes result ...
Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X 2 /X − couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V).