Search results
Results from the WOW.Com Content Network
Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping. It consists of four phases: initiation, elongation, termination, and recapping.
The first step in initiation is formation of the pre-initiation complex, 48S PIC. The small ribosomal subunit and various eukaryotic initiation factors are recruited to the mRNA 5′ TL and to form the 48S PIC complex, which scans 5′ to 3′ along the mRNA transcript, inspecting each successive triplet for a functional start codon.
The Kozak consensus sequence (Kozak consensus or Kozak sequence) is a nucleic acid motif that functions as the protein translation initiation site in most eukaryotic mRNA transcripts. [1] Regarded as the optimum sequence for initiating translation in eukaryotes , the sequence is an integral aspect of protein regulation and overall cellular ...
A eukaryotic cell has a nucleus that separates the processes of transcription and translation. Eukaryotic transcription occurs within the nucleus where DNA is packaged into nucleosomes and higher order chromatin structures. The complexity of the eukaryotic genome necessitates a great variety and complexity of gene expression control.
First, convert each template DNA base to its RNA complement (note that the complement of A is now U), as shown below. Note that the template strand of the DNA is the one the RNA is polymerized against; the other DNA strand would be the same as the RNA, but with thymine instead of uracil. DNA -> RNA A -> U T -> A C -> G G -> C A=T-> A=U
Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent ...
"The structure of a eukaryotic protein-coding gene. Regulatory sequence controls when and where expression occurs for the protein coding region (red). Promoter and enhancer regions (yellow) regulate the transcription of the gene into a pre-mRNA which is modified to add a 5' cap and poly-A tail (grey) and remove introns.
Some eukaryotic cells contain an enzyme with reverse transcription activity called telomerase. Telomerase carries an RNA template from which it synthesizes a telomere, a repeating sequence of DNA, to the end of linear chromosomes. It is important because every time a linear chromosome is duplicated, it is shortened.