Search results
Results from the WOW.Com Content Network
Equations of radiative transfer have application in a wide variety of subjects including optics, astrophysics, atmospheric science, and remote sensing. Analytic solutions to the radiative transfer equation (RTE) exist for simple cases but for more realistic media, with complex multiple scattering effects, numerical methods are required.
The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.g., to estimate the Earth's energy budget or simulate an instrument response), one has to integrate this over a band of frequencies (or wavelengths).
Modeling photon propagation with Monte Carlo methods is a flexible yet rigorous approach to simulate photon transport. In the method, local rules of photon transport are expressed as probability distributions which describe the step size of photon movement between sites of photon-matter interaction and the angles of deflection in a photon's trajectory when a scattering event occurs.
The RTE is a differential equation describing radiance (, ^,).It can be derived via conservation of energy.Briefly, the RTE states that a beam of light loses energy through divergence and extinction (including both absorption and scattering away from the beam) and gains energy from light sources in the medium and scattering directed towards the beam.
When radiation is scattered (the phenomena that makes the sky appear blue) or when the fraction of molecules in an excited state is not determined by the Boltzmann distribution (and LTE doesn't exist), more complicated equations are required. For example, scattering from clear skies reflects about 32 W/m 2 (about 13%) of incoming solar ...
The method of discrete ordinates, or the S n method, is one way to approximately solve the RTE by discretizing both the xyz-domain and the angular variables that specify the direction of radiation. The methods were developed by Subrahmanyan Chandrasekhar when he was working on radiative transfer.
The Diffusion Theory is an approximation of the radiative transfer equation (RTE), and an analytical way to simulate photon transport. As such, it has the ability to model photon propagation through tissue quickly.
The grey atmosphere (or gray) is a useful set of approximations made for radiative transfer applications in studies of stellar atmospheres (atmospheres of stars) based on the simplified notion that the absorption coefficient of matter within a star's atmosphere is constant—that is, unchanging—for all frequencies of the star's incident radiation.