Search results
Results from the WOW.Com Content Network
The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.g., to estimate the Earth's energy budget or simulate an instrument response), one has to integrate this over a band of frequencies (or wavelengths).
Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of ...
The RTE is a differential equation describing radiance (, ^,).It can be derived via conservation of energy.Briefly, the RTE states that a beam of light loses energy through divergence and extinction (including both absorption and scattering away from the beam) and gains energy from light sources in the medium and scattering directed towards the beam.
The radiation field thereby maintains the blackbody intensity appropriate for the local temperature. At equilibrium, I λ = B λ (T) and therefore dI λ = 0 even when the density of the GHG (n) increases. This has led some to falsely believe that Schwarzschild's equation predicts no radiative forcing at wavelengths where absorption is "saturated".
The goal of radiation therapy is to deliver energy, generally in the form of ionizing radiation, to cancerous tissue while sparing the surrounding normal tissue. Monte Carlo modeling is commonly employed in radiation therapy to determine the peripheral dose the patient will experience due to scattering, both from the patient tissue as well as scattering from collimation upstream in the linear ...
The transport of longwave radiation from Earth's surface through its multi-layered atmosphere is governed by radiative transfer equations such as Schwarzschild's equation for radiative transfer (or more complex equations if scattering is present) and obeys Kirchhoff's law of thermal radiation.
Putting this into the equation for radiative transfer we get = where s is the distance measured along the path traveled by the beam. The minus sign on the left hand side shows that the intensity decreases as the beam travels, due to the absorption of photons.
The intensity field can in principle be solved from the integrodifferential radiative transfer equation (RTE), but an exact solution is usually impossible and even in the case of geometrically simple systems can contain unusual special functions such as the Chandrasekhar's H-function and Chandrasekhar's X- and Y-functions. [3]