Search results
Results from the WOW.Com Content Network
Test crosses are only useful if dominance is complete. Incomplete dominance is when the dominant allele and recessive allele come together to form a blend of the two phenotypes in the offspring. Test crosses are also not applicable with codominant genes, where both phenotypes of a heterozygote trait will be expressed.
In genetics, underdominance, also known as homozygote advantage, heterozygote disadvantage, or negative overdominance," [1] is the opposite of overdominance. It is the selection against the heterozygote , causing disruptive selection [ 2 ] and divergent genotypes .
Alternatively, a heterozygote for gene "R" is assumed to be "Rr". The uppercase letter is usually written first. [citation needed] If the trait in question is determined by simple (complete) dominance, a heterozygote will express only the trait coded by the dominant allele, and the trait coded by the recessive allele will not be present.
An individual with the sickle cell trait shows incomplete dominance when the shape of the red blood cell is considered. This is because the sickling happens only at low oxygen concentrations. With regards to the actual concentration of hemoglobin in the circulating cells, the alleles demonstrate co-dominance as both 'normal' and mutant forms co ...
Figure 1: Inheritance pattern of dominant (red) and recessive (white) phenotypes when each parent (1) is homozygous for either the dominant or recessive trait. All members of the F 1 generation are heterozygous and share the same dominant phenotype (2), while the F 2 generation exhibits a 6:2 ratio of dominant to recessive phenotypes (3).
In a dominant-recessive inheritance, an average of 25% are homozygous with the dominant trait, 50% are heterozygous showing the dominant trait in the phenotype (genetic carriers), 25% are homozygous with the recessive trait and therefore express the recessive trait in the phenotype. The genotypic ratio is 1: 2 : 1, and the phenotypic ratio is 3: 1.
The phenotypic ratio of a cross between two heterozygotes is 9:3:3:1, where 9/16 of the individuals possess the dominant phenotype for both traits, 3/16 of the individuals possess the dominant phenotype for one trait, 3/16 of the individuals possess the dominant phenotype for the other trait, and 1/16 are recessive for both traits. [1]
A rabbit's coat color is determined by a single gene that has at least four different alleles. They display a pattern of a dominance-hierarchy that can produce four coat colors. In the genes for the dog coat colours there are four alleles on the Agouti-locus. The allele "aw" is dominant over the alleles "at" and "a" but recessive under "Ay".