enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Non-Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Non-Mendelian_inheritance

    Co-dominant expression of genes for plumage colours. In cases of co-dominance, the genetic traits of both different alleles of the same gene-locus are clearly expressed in the phenotype. For example, in certain varieties of chicken, the allele for black feathers is co-dominant with the allele for white feathers.

  3. Zygosity - Wikipedia

    en.wikipedia.org/wiki/Zygosity

    Alternatively, a heterozygote for gene "R" is assumed to be "Rr". The uppercase letter is usually written first. [citation needed] If the trait in question is determined by simple (complete) dominance, a heterozygote will express only the trait coded by the dominant allele, and the trait coded by the recessive allele will not be present.

  4. Heterozygote advantage - Wikipedia

    en.wikipedia.org/wiki/Heterozygote_advantage

    A heterozygote advantage describes the case in which the heterozygous genotype has a higher relative fitness than either the homozygous dominant or homozygous recessive genotype. Loci exhibiting heterozygote advantage are a small minority of loci. [1] The specific case of heterozygote advantage due to a single locus is known as overdominance.

  5. Dominance (genetics) - Wikipedia

    en.wikipedia.org/wiki/Dominance_(genetics)

    Autosomal dominant and autosomal recessive inheritance, the two most common Mendelian inheritance patterns. An autosome is any chromosome other than a sex chromosome.. In genetics, dominance is the phenomenon of one variant of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome.

  6. Underdominance - Wikipedia

    en.wikipedia.org/wiki/Underdominance

    In genetics, underdominance, also known as homozygote advantage, heterozygote disadvantage, or negative overdominance," [1] is the opposite of overdominance. It is the selection against the heterozygote , causing disruptive selection [ 2 ] and divergent genotypes .

  7. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    Test crosses are also not applicable with codominant genes, where both phenotypes of a heterozygote trait will be expressed. Another limitation is for epistatic mutations where the expression of a gene will be overpowered by the expression of another gene. [13] A trait can also be determined by multiple genes, known as polygenic inheritance.

  8. Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Mendelian_inheritance

    In a dominant-recessive inheritance, an average of 25% are homozygous with the dominant trait, 50% are heterozygous showing the dominant trait in the phenotype (genetic carriers), 25% are homozygous with the recessive trait and therefore express the recessive trait in the phenotype. The genotypic ratio is 1: 2 : 1, and the phenotypic ratio is 3: 1.

  9. Simple Mendelian genetics in humans - Wikipedia

    en.wikipedia.org/wiki/Simple_Mendelian_genetics...

    Mendelian traits behave according to the model of monogenic or simple gene inheritance in which one gene corresponds to one trait. Discrete traits (as opposed to continuously varying traits such as height) with simple Mendelian inheritance patterns are relatively rare in nature, and many of the clearest examples in humans cause disorders.