Search results
Results from the WOW.Com Content Network
The x intercepts are found by setting y equal to 0 in the equation of the curve and solving for x. Similarly, the y intercepts are found by setting x equal to 0 in the equation of the curve and solving for y. Determine the symmetry of the curve. If the exponent of x is always even in the equation of the curve then the y-axis is an axis of ...
An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.
An important aspect in the study of elliptic curves is devising effective ways of counting points on the curve.There have been several approaches to do so, and the algorithms devised have proved to be useful tools in the study of various fields such as number theory, and more recently in cryptography and Digital Signature Authentication (See elliptic curve cryptography and elliptic curve DSA).
A drawback of these coordinates is that the points with Cartesian coordinates (x,y) and (x,-y) have the same coordinates (,), so the conversion to Cartesian coordinates is not a function, but a multifunction. =
The Rytz’s axis construction is a basic method of descriptive geometry to find the axes, the semi-major axis and semi-minor axis and the vertices of an ellipse, starting from two conjugated half-diameters. If the center and the semi axis of an ellipse are determined the ellipse can be drawn using an ellipsograph or by hand (see ellipse).
The above groups can be described algebraically as well as geometrically. Given the curve y 2 = x 3 + bx + c over the field K (whose characteristic we assume to be neither 2 nor 3), and points P = (x P, y P) and Q = (x Q, y Q) on the curve, assume first that x P ≠ x Q (case 1).
Bresenham's algorithm chooses the integer y corresponding to the pixel center that is closest to the ideal (fractional) y for the same x; on successive columns y can remain the same or increase by 1. The general equation of the line through the endpoints is given by:
In general the intersection points can be determined by solving the equation by a Newton iteration. If a) both conics are given implicitly (by an equation) a 2-dimensional Newton iteration b) one implicitly and the other parametrically given a 1-dimensional Newton iteration is necessary. See next section.