enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vapour pressure of water - Wikipedia

    en.wikipedia.org/wiki/Vapour_pressure_of_water

    The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.

  3. Tetens equation - Wikipedia

    en.wikipedia.org/wiki/Tetens_equation

    where temperature T is in degrees Celsius (°C) and saturation vapor pressure P is in kilopascals (kPa). According to Monteith and Unsworth, "Values of saturation vapour pressure from Tetens' formula are within 1 Pa of exact values up to 35 °C." Murray (1967) provides Tetens' equation for temperatures below 0 °C: [3]

  4. Vapor pressure - Wikipedia

    en.wikipedia.org/wiki/Vapor_pressure

    This is illustrated in the vapor pressure chart (see right) that shows graphs of the vapor pressures versus temperatures for a variety of liquids. [7] At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere, [ 1 ] 760 Torr, 101.325 kPa, or 14.69595 psi.

  5. Goff–Gratch equation - Wikipedia

    en.wikipedia.org/wiki/Goff–Gratch_equation

    e * is the saturation water vapor pressure T is the absolute air temperature in kelvins T st is the steam-point (i.e. boiling point at 1 atm.) temperature (373.15 K) e * st is e * at the steam-point pressure (1 atm = 1013.25 hPa) Similarly, the correlation for the saturation water vapor pressure over ice is:

  6. Thermodynamic diagrams - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_diagrams

    Saturation vapor curve; Thermodynamic surface; Specific to weather services, there are mainly three different types of thermodynamic diagrams used: Skew-T log-P diagram; Tephigram; Emagram; All three diagrams are derived from the physical P–alpha diagram which combines pressure (P) and specific volume (alpha) as its basic

  7. Dew point - Wikipedia

    en.wikipedia.org/wiki/Dew_point

    The dew point of a given body of air is the temperature to which it must be cooled to become saturated with water vapor. This temperature depends on the pressure and water content of the air. When the air is cooled below the dew point, its moisture capacity is reduced and airborne water vapor will condense to form liquid water known as dew. [1]

  8. Arden Buck equation - Wikipedia

    en.wikipedia.org/wiki/Arden_Buck_equation

    P s (T) is the saturation vapor pressure in hPa; exp(x) is the exponential function; T is the air temperature in degrees Celsius; Buck (1981) also lists enhancement factors for a temperature range of −80 to 50 °C (−112 to 122 °F) at pressures of 1,000 mb, 500 mb, and 250 mb. These coefficients are listed in the table below.

  9. Saturation dome - Wikipedia

    en.wikipedia.org/wiki/Saturation_Dome

    A saturation dome uses the projection of a P–v–T diagram (pressure, specific volume, and temperature) onto the P–v plane. The points that create the left-hand side of the dome represent the saturated liquid states, while the points on the right-hand side represent the saturated vapor states (commonly referred to as the “dry” region).