enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Evolutionary algorithm - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_algorithm

    Techniques from evolutionary algorithms applied to the modeling of biological evolution are generally limited to explorations of microevolutionary processes and planning models based upon cellular processes. In most real applications of EAs, computational complexity is a prohibiting factor. [2]

  3. Population model (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Population_model...

    When applying both population models to genetic algorithms, [5] [6] evolutionary strategy [20] [17] [21] and other EAs, [22] [23] the splitting of a total population into subpopulations usually reduces the risk of premature convergence and leads to better results overall more reliably and faster than would be expected with panmictic EAs.

  4. MCACEA - Wikipedia

    en.wikipedia.org/wiki/MCACEA

    MCACEA (Multiple Coordinated Agents Coevolution Evolutionary Algorithm) is a general framework that uses a single evolutionary algorithm (EA) per agent sharing their optimal solutions to coordinate the evolutions of the EAs populations using cooperation objectives.

  5. Mutation (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Mutation_(evolutionary...

    Many EAs, such as the evolution strategy [10] [11] or the real-coded genetic algorithms, [12] [13] [8] work with real numbers instead of bit strings. This is due to the good experiences that have been made with this type of coding.

  6. Evolutionary computation - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_computation

    Genetic algorithms deliver methods to model biological systems and systems biology that are linked to the theory of dynamical systems, since they are used to predict the future states of the system. This is just a vivid (but perhaps misleading) way of drawing attention to the orderly, well-controlled and highly structured character of ...

  7. Evolutionary multimodal optimization - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_multimodal...

    Evolutionary algorithms (EAs) due to their population based approach, provide a natural advantage over classical optimization techniques. They maintain a population of possible solutions, which are processed every generation, and if the multiple solutions can be preserved over all these generations, then at termination of the algorithm we will ...

  8. Crossover (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Crossover_(evolutionary...

    Crossover in evolutionary algorithms and evolutionary computation, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual ...

  9. Selection (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Selection_(evolutionary...

    Selection is the stage of a genetic algorithm or more general evolutionary algorithm in which individual genomes are chosen from a population for later breeding (e.g., using the crossover operator). Selection mechanisms are also used to choose candidate solutions (individuals) for the next generation.