Search results
Results from the WOW.Com Content Network
Cementation is the conversion of the metal ion to the metal by a redox reaction. A typical application involves addition of scrap iron to a solution of copper ions. Iron dissolves and copper metal is deposited. Solvent Extraction; Ion exchange; Gas reduction. Treating a solution of nickel and ammonia with hydrogen affords nickel metal as its ...
The most common example of roasting is the oxidation of metal sulfide ores. The metal sulfide is heated in the presence of air to a temperature that allows the oxygen in the air to react with the sulfide to form sulfur dioxide gas and solid metal oxide. The solid product from roasting is often called "calcine".
Extractive metallurgy is a branch of metallurgical engineering wherein process and methods of extraction of metals from their natural mineral deposits are studied. The field is a materials science, covering all aspects of the types of ore, washing, concentration, separation, chemical processes and extraction of pure metal and their alloying to suit various applications, sometimes for direct ...
The most reactive metals, such as sodium, will react with cold water to produce hydrogen and the metal hydroxide: 2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g) Metals in the middle of the reactivity series, such as iron , will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt ...
This reaction would oxidize the lead to litharge, along with any other impurities present, whereas the silver would not get oxidized. [ 1 ] In the 18th century, the process was carried on using a kind of reverberatory furnace , but differing from the usual kind in that air was blown over the surface of the molten lead from bellows or (in the ...
Smelting involves more than just melting the metal out of its ore. Most ores are the chemical compound of the metal and other elements, such as oxygen (as an oxide), sulfur (as a sulfide), or carbon and oxygen together (as a carbonate). To extract the metal, workers must make these compounds undergo a chemical reaction.
The general reaction of oxide removal is: Metal oxide + Acid → Salt + Water. Salts are ionic in nature and can cause problems from metallic leaching or dendrite growth, with possible product failure. In some cases, particularly in high-reliability applications, flux residues must be removed.
In the temperature ranges commonly used, the metal and the oxide are in a condensed state (solid or liquid), and oxygen is a gas with a much larger molar entropy. For the oxidation of each metal, the dominant contribution to the entropy change (ΔS) is the removal of 1 ⁄ 2 mol O 2, so that ΔS is negative and roughly equal for all metals.