Search results
Results from the WOW.Com Content Network
Extractive metallurgy is a branch of metallurgical engineering wherein process and methods of extraction of metals from their natural mineral deposits are studied. The field is a materials science, covering all aspects of the types of ore, washing, concentration, separation, chemical processes and extraction of pure metal and their alloying to suit various applications, sometimes for direct ...
Cementation is the conversion of the metal ion to the metal by a redox reaction. A typical application involves addition of scrap iron to a solution of copper ions. Iron dissolves and copper metal is deposited. Solvent Extraction; Ion exchange; Gas reduction. Treating a solution of nickel and ammonia with hydrogen affords nickel metal as its ...
The most common example of roasting is the oxidation of metal sulfide ores. The metal sulfide is heated in the presence of air to a temperature that allows the oxygen in the air to react with the sulfide to form sulfur dioxide gas and solid metal oxide. The solid product from roasting is often called "calcine".
Significant success came with the use of calcium as a reductant, but the resulting mixture still contained significant oxide impurities. [6] Major success using magnesium at 1000 °C using a molybdenum clad reactor, was reported by Kroll to the Electrochemical Society in Ottawa. [7] Kroll's titanium was highly ductile reflecting its high purity.
The most reactive metals, such as sodium, will react with cold water to produce hydrogen and the metal hydroxide: 2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g) Metals in the middle of the reactivity series, such as iron , will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt ...
Smelting involves more than just melting the metal out of its ore. Most ores are the chemical compound of the metal and other elements, such as oxygen (as an oxide), sulfur (as a sulfide), or carbon and oxygen together (as a carbonate). To extract the metal, workers must make these compounds undergo a chemical reaction.
The cathode reaction is 2 Na + + 2 e − → 2Na. The anode reaction is 4 OH − → O 2 + 2 H 2 O + 4 e −. Despite the elevated temperature, some of the water produced remains dissolved in the electrolyte. [4] This water diffuses throughout the electrolyte and results in the reverse reaction taking place on the electrolyzed sodium metal:
Metal aqua ions are often involved in the formation of complexes. The reaction may be written as pM x+ (aq) + qL y− → [M p L q] (px-qy)+ In reality this is a substitution reaction in which one or more water molecules from the first hydration shell of the metal ion are replaced by ligands, L. The complex is described as an inner-sphere complex.