Search results
Results from the WOW.Com Content Network
Attachments on nanoparticles make them more biocompatible. A nanoparticle–biomolecule conjugate is a nanoparticle with biomolecules attached to its surface. Nanoparticles are minuscule particles, typically measured in nanometers (nm), that are used in nanobiotechnology to explore the functions of biomolecules. Properties of the ultrafine ...
Inorganic nanoparticles have been largely adopted to biological and medical applications ranging from imaging and diagnoses to drug delivery. [22] Inorganic nanoparticles are usually composed of inert metals such as gold and titanium that form nanospheres, however, iron oxide nanoparticles have also become an option.
Polymeric nanoparticles may also contain beneficial controlled release mechanisms. Polymer Branch. Nanoparticles made from natural polymers that are biodegradable have the abilities to target specific organs and tissues in the body, to carry DNA for gene therapy, and to deliver larger molecules such as proteins, peptides, and even genes. [7]
Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Silica nanoparticles, in particular, are inert from a photophysical perspective and can accumulate a large number of dye(s) within their shells. [42]
Nanoparticles are distinguished from microparticles (1-1000 μm), "fine particles" (sized between 100 and 2500 nm), and "coarse particles" (ranging from 2500 to 10,000 nm), because their smaller size drives very different physical or chemical properties, like colloidal properties and ultrafast optical effects [3] or electric properties. [4]
Protein nanotechnology is a burgeoning field of research that integrates the diverse physicochemical properties of proteins with nanoscale technology. This field assimilated into pharmaceutical research to give rise to a new classification of nanoparticles termed protein (or protein-based) nanoparticles (PNPs).
The concentrations of gold nanoparticles in biological systems for practical usage range from 1-100 nanoparticles per cell. High concentrations may lead to adverse effects for cell structure and function, which may not appear non-toxic in assays but preparation of the particles have been found to produce abnormal effects in the cell. [ 36 ]
Nanoparticles have been studied extensively for their antimicrobial properties in order to fight super bug bacteria. Several characteristics in particular make nanoparticles strong candidates as a traditional antibiotic drug alternative. Firstly, they have a high surface area to volume ratio, which increases contact area with target organisms.