enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnification - Wikipedia

    en.wikipedia.org/wiki/Magnification

    Optical magnification is the ratio between the apparent size of an object (or its size in an image) and its true size, and thus it is a dimensionless number. Optical magnification is sometimes referred to as "power" (for example "10× power"), although this can lead to confusion with optical power.

  3. Magnifying glass - Wikipedia

    en.wikipedia.org/wiki/Magnifying_glass

    The lens's magnification is the ratio of the image's apparent height to the object's actual height, correlating to the proportion of the distances from the image to the lens and the object to the lens. Moving the object nearer to the lens amplifies this effect, increasing magnification. [10]

  4. Lens - Wikipedia

    en.wikipedia.org/wiki/Lens

    When taking a picture of the moon using a camera with a 50 mm lens, one is not concerned with the linear magnification M ≈ −50 mm / 380 000 km = −1.3 × 1010. Rather, the plate scale of the camera is about 1°/mm , from which one can conclude that the 0.5 mm image on the film corresponds to an angular size of the moon seen from earth ...

  5. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    Visulization of flux through differential area and solid angle. As always ^ is the unit normal to the incident surface A, = ^, and ^ is a unit vector in the direction of incident flux on the area element, θ is the angle between them.

  6. Gravitational lensing formalism - Wikipedia

    en.wikipedia.org/wiki/Gravitational_lensing...

    The amount of magnification is given by the ratio of the image area to the source area. For a circularly symmetric lens, the magnification factor μ is given by μ = θ β d θ d β {\displaystyle \mu ={\frac {\theta }{\beta }}{\frac {d\theta }{d\beta }}}

  7. Numerical aperture - Wikipedia

    en.wikipedia.org/wiki/Numerical_aperture

    [3] [5] The magnification here is typically negative, and the pupil magnification is most often assumed to be 1 — as Allen R. Greenleaf explains, "Illuminance varies inversely as the square of the distance between the exit pupil of the lens and the position of the plate or film. Because the position of the exit pupil usually is unknown to the ...

  8. Abbe sine condition - Wikipedia

    en.wikipedia.org/wiki/Abbe_sine_condition

    When the imaging system obeys the Abbe sine condition, the ratio of the sines of these angles equal the (lateral absolute) magnification of the system. In optics , the Abbe sine condition is a condition that must be fulfilled by a lens or other optical system in order for it to produce sharp images of off-axis as well as on-axis objects.

  9. Thin lens - Wikipedia

    en.wikipedia.org/wiki/Thin_lens

    A lens may be considered a thin lens if its thickness is much less than the radii of curvature of its surfaces (d ≪ | R 1 | and d ≪ | R 2 |).. In optics, a thin lens is a lens with a thickness (distance along the optical axis between the two surfaces of the lens) that is negligible compared to the radii of curvature of the lens surfaces.