Search results
Results from the WOW.Com Content Network
The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region. This process is continued until no outliers remain in a data set.
The outliers would greatly change the estimate of location if the arithmetic average were to be used as a summary statistic of location. The problem is that the arithmetic mean is very sensitive to the inclusion of any outliers; in statistical terminology, the arithmetic mean is not robust .
The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...
Cochran's test, [1] named after William G. Cochran, is a one-sided upper limit variance outlier statistical test .The C test is used to decide if a single estimate of a variance (or a standard deviation) is significantly larger than a group of variances (or standard deviations) with which the single estimate is supposed to be comparable.
The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.
A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.
Big outliers tend to be short-lived. Crowds don't tolerate excess, so something happens to pull outliers back toward a happy medium. Averages act like gravity.
The squared loss has the disadvantage that it has the tendency to be dominated by outliers—when summing over a set of 's (as in = ()), the sample mean is influenced too much by a few particularly large -values when the distribution is heavy tailed: in terms of estimation theory, the asymptotic relative efficiency of the mean is poor for heavy ...