enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Convolution has applications that include probability, statistics, acoustics, spectroscopy, signal processing and image processing, geophysics, engineering, physics, computer vision and differential equations. [1] The convolution can be defined for functions on Euclidean space and other groups (as algebraic structures).

  3. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    The Laplace transform is used frequently in engineering and physics; the output of a linear time-invariant system can be calculated by convolving its unit impulse response with the input signal. Performing this calculation in Laplace space turns the convolution into a multiplication; the latter being easier to solve because of its algebraic form.

  4. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).

  5. Two-sided Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Two-sided_Laplace_transform

    In mathematics, the two-sided Laplace transform or bilateral Laplace transform is an integral transform equivalent to probability's moment-generating function. Two-sided Laplace transforms are closely related to the Fourier transform , the Mellin transform , the Z-transform and the ordinary or one-sided Laplace transform .

  6. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain ) equals point-wise multiplication in the other domain (e.g., frequency domain ).

  7. Final value theorem - Wikipedia

    en.wikipedia.org/wiki/Final_value_theorem

    In fact, both the impulse response and step response oscillate, and (in this special case) the final value theorem describes the average values around which the responses oscillate. There are two checks performed in Control theory which confirm valid results for the Final Value Theorem:

  8. Laplace–Stieltjes transform - Wikipedia

    en.wikipedia.org/wiki/Laplace–Stieltjes_transform

    The Laplace–Stieltjes transform of a real-valued function g is given by a Lebesgue–Stieltjes integral of the form ()for s a complex number.As with the usual Laplace transform, one gets a slightly different transform depending on the domain of integration, and for the integral to be defined, one also needs to require that g be of bounded variation on the region of integration.

  9. Overlap–add method - Wikipedia

    en.wikipedia.org/wiki/Overlap–add_method

    For example, when = and =, Eq.3 equals , whereas direct evaluation of Eq.1 would require up to complex multiplications per output sample, the worst case being when both and are complex-valued. Also note that for any given M , {\displaystyle M,} Eq.3 has a minimum with respect to N . {\displaystyle N.} Figure 2 is a graph of the values of N ...