enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Manganese(II) chloride - Wikipedia

    en.wikipedia.org/wiki/Manganese(II)_chloride

    Manganese(II) chloride is the dichloride salt of manganese, MnCl 2.This inorganic chemical exists in the anhydrous form, as well as the dihydrate (MnCl 2 ·2H 2 O) and tetrahydrate (MnCl 2 ·4H 2 O), with the tetrahydrate being the most common form.

  3. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.

  4. Molar mass constant - Wikipedia

    en.wikipedia.org/wiki/Molar_mass_constant

    The molar mass constant, usually denoted by M u, is a physical constant defined as one twelfth of the molar mass of carbon-12: M u = M(12 C)/12. [1] The molar mass of an element or compound is its relative atomic mass (atomic weight) or relative molecular mass (molecular weight or formula weight) multiplied by the molar mass constant.

  5. Molar mass - Wikipedia

    en.wikipedia.org/wiki/Molar_mass

    The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.

  6. List of physical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_constants

    molar mass of carbon-12: 12.000 000 0126 (37) × 10 −3 kg⋅mol −1: 3.1 × 10 −10 [53] = / atomic mass constant: 1.660 539 068 92 (52) × 10 −27 kg: 3.1 × 10 −10 [54] = / molar mass constant: 1.000 000 001 05 (31) × 10 −3 kg⋅mol −1: 3.1 × 10 −10 [55]

  7. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    How much gas is present could be specified by giving the mass instead of the chemical amount of gas. Therefore, an alternative form of the ideal gas law may be useful. The chemical amount, n (in moles), is equal to total mass of the gas (m) (in kilograms) divided by the molar mass, M (in kilograms per mole): =.

  8. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...

  9. Amount of substance - Wikipedia

    en.wikipedia.org/wiki/Amount_of_substance

    The molar mass of a substance depends not only on its molecular formula, but also on the distribution of isotopes of each chemical element present in it. For example, the molar mass of calcium-40 is 39.962 590 98 (22) g/mol, whereas the molar mass of calcium-42 is 41.958 618 01 (27) g/mol, and of calcium with the normal isotopic mix is 40.078(4 ...