enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron degeneracy pressure - Wikipedia

    en.wikipedia.org/wiki/Electron_degeneracy_pressure

    It is a manifestation of the more general phenomenon of quantum degeneracy pressure. The term "degenerate" here is not related to degenerate energy levels, but to Fermi–Dirac statistics close to the zero-temperature limit [1] (temperatures much smaller than the Fermi temperature, which for metals is about 10000 K.)

  3. Degenerate matter - Wikipedia

    en.wikipedia.org/wiki/Degenerate_matter

    While degeneracy pressure usually dominates at extremely high densities, it is the ratio between degenerate pressure and thermal pressure which determines degeneracy. Given a sufficiently drastic increase in temperature (such as during a red giant star's helium flash ), matter can become non-degenerate without reducing its density.

  4. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement. The number of different states corresponding to a particular energy level is known as the degree of degeneracy (or simply the degeneracy) of the level.

  5. Fermi gas - Wikipedia

    en.wikipedia.org/wiki/Fermi_gas

    This pressure is known as the degeneracy pressure. In this sense, systems composed of fermions are also referred as degenerate matter . Standard stars avoid collapse by balancing thermal pressure ( plasma and radiation) against gravitational forces.

  6. Chandrasekhar limit - Wikipedia

    en.wikipedia.org/wiki/Chandrasekhar_limit

    The Chandrasekhar limit is a consequence of competition between gravity and electron degeneracy pressure. Electron degeneracy pressure is a quantum-mechanical effect arising from the Pauli exclusion principle. Since electrons are fermions, no two electrons can be in the same state, so not all electrons can be in the minimum-energy level.

  7. Partition function (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    In the case of degenerate energy levels, we can write the partition function in terms of the contribution from energy levels (indexed by j) as follows: =, where g j is the degeneracy factor, or number of quantum states s that have the same energy level defined by E j = E s.

  8. Kramers' theorem - Wikipedia

    en.wikipedia.org/wiki/Kramers'_theorem

    In quantum mechanics, the Kramers' degeneracy theorem states that for every energy eigenstate of a time-reversal symmetric system with half-integer total spin, there is another eigenstate with the same energy related by time-reversal. In other words, the degeneracy of every energy level

  9. Orders of magnitude (pressure) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(pressure)

    Quantum-mechanical electron degeneracy pressure in a block of copper [83] 48 GPa Detonation pressure of pure CL-20, [84] the most powerful high explosive in mass production 69 GPa 10,000,000 psi Highest water jet pressure attained in research lab [85] 96 GPa Pressure at which metallic oxygen forms (960,000 bar) [81] 10 11 Pa