Search results
Results from the WOW.Com Content Network
Electron degeneracy pressure will halt the gravitational collapse of a star if its mass is below the Chandrasekhar limit (1.44 solar masses [6]). This is the pressure that prevents a white dwarf star from collapsing.
The Chandrasekhar limit is a consequence of competition between gravity and electron degeneracy pressure. Electron degeneracy pressure is a quantum-mechanical effect arising from the Pauli exclusion principle. Since electrons are fermions, no two electrons can be in the same state, so not all electrons can be in the minimum-energy level.
While degeneracy pressure usually dominates at extremely high densities, it is the ratio between degenerate pressure and thermal pressure which determines degeneracy. Given a sufficiently drastic increase in temperature (such as during a red giant star's helium flash ), matter can become non-degenerate without reducing its density.
This pressure is known as the degeneracy pressure. In this sense, systems composed of fermions are also referred as degenerate matter . Standard stars avoid collapse by balancing thermal pressure ( plasma and radiation) against gravitational forces.
This pressure is called the electron degeneracy pressure and does not come from repulsion or motion of the electrons but from the restriction that no more than two electrons (due to the two values of spin) can occupy the same energy level. This pressure defines the compressibility or bulk modulus of the metal [Ashcroft & Mermin 8]
Instead, it is supported only by electron degeneracy pressure, causing it to be extremely dense. The physics of degeneracy yields a maximum mass for a non-rotating white dwarf, the Chandrasekhar limit— approximately 1.44 times M ☉ — beyond which electron degeneracy pressure cannot
This exotic form of matter is known as degenerate matter. The immense gravitational force of a star's mass is normally held in equilibrium by thermal pressure caused by heat produced in thermonuclear fusion in the star's core. In white dwarfs, which do not undergo nuclear fusion, an opposing force to gravity is provided by electron degeneracy ...
Quantum-mechanical electron degeneracy pressure in a block of copper [83] 48 GPa Detonation pressure of pure CL-20, [84] the most powerful high explosive in mass production 69 GPa 10,000,000 psi Highest water jet pressure attained in research lab [85] 96 GPa Pressure at which metallic oxygen forms (960,000 bar) [81] 10 11 Pa