enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler diagram - Wikipedia

    en.wikipedia.org/wiki/Euler_diagram

    For example, connectedness of zones might be enforced, or concurrency of curves or multiple points might be banned, as might tangential intersection of curves. In the adjacent diagram, examples of small Venn diagrams are transformed into Euler diagrams by sequences of transformations; some of the intermediate diagrams have concurrency of curves.

  3. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex .

  4. BEST theorem - Wikipedia

    en.wikipedia.org/wiki/BEST_theorem

    In graph theory, a part of discrete mathematics, the BEST theorem gives a product formula for the number of Eulerian circuits in directed (oriented) graphs. The name is an acronym of the names of people who discovered it: N. G. de Bruijn, Tatyana Ehrenfest, Cedric Smith and W. T. Tutte.

  5. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    An Eulerian path is a walk that uses every edge of a graph exactly once. An Eulerian circuit (also called an Eulerian cycle or an Euler tour) is a closed walk that uses every edge exactly once. An Eulerian graph is a graph that has an Eulerian circuit. For an undirected graph, this means that the graph is connected and every vertex has even degree.

  6. List of topics named after Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/List_of_topics_named_after...

    Eulerian circuit, Euler cycle or Eulerian path – a path through a graph that takes each edge once Eulerian graph has all its vertices spanned by an Eulerian path; Euler class; Euler diagram – popularly called "Venn diagrams", although some use this term only for a subclass of Euler diagrams. Euler tour technique

  7. Euler tour technique - Wikipedia

    en.wikipedia.org/wiki/Euler_tour_technique

    The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees. The tree is viewed as a directed graph that contains two directed edges for each edge in the tree. The tree can then be represented as a Eulerian circuit of the directed graph, known as the Euler tour representation (ETR) of the tree

  8. Contributions of Leonhard Euler to mathematics - Wikipedia

    en.wikipedia.org/wiki/Contributions_of_Leonhard...

    In addition, his recognition that the key information was the number of bridges and the list of their endpoints (rather than their exact positions) presaged the development of topology. [8] Euler also made contributions to the understanding of planar graphs. He introduced a formula governing the relationship between the number of edges ...

  9. de Bruijn sequence - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_sequence

    The de Bruijn sequences can be constructed by taking a Hamiltonian path of an n-dimensional de Bruijn graph over k symbols (or equivalently, an Eulerian cycle of an (n − 1)-dimensional de Bruijn graph). [5] An alternative construction involves concatenating together, in lexicographic order, all the Lyndon words whose length divides n. [6]