Search results
Results from the WOW.Com Content Network
In the ionic counting method, the Ruthenium of the complex is treated as Ru(II). It has 6 d electrons to contribute to the electron count. The two bpy ligands are L-type ligand neutral ligands, thus contributing two electrons each. The two chloride ligands are anionic ligands, thus donating 2 electrons each to the electron count.
In practice the molar ionic conductivities are calculated from the measured ion transport numbers and the total molar conductivity. For the cation + = + +, and similarly for the anion. In solutions, where ionic complexation or associaltion are important, two different transport/transference numbers can be defined.
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
The d electron count or number of d electrons is a chemistry formalism used to describe the electron configuration of the valence electrons of a transition metal center in a coordination complex. [ 1 ] [ 2 ] The d electron count is an effective way to understand the geometry and reactivity of transition metal complexes.
For chemical compounds with regular lattices such as sodium chloride and caesium chloride, a count of the nearest neighbors gives a good picture of the environment of the ions. In sodium chloride each sodium ion has 6 chloride ions as nearest neighbours (at 276 pm) at the corners of an octahedron and each chloride ion has 6 sodium atoms (also ...
Compounds that obey the 18-electron rule are typically "exchange inert". Examples include [Co(NH 3) 6]Cl 3, Mo(CO) 6, and [Fe(CN) 6] 4−.In such cases, in general ligand exchange occurs via dissociative substitution mechanisms, wherein the rate of reaction is determined by the rate of dissociation of a ligand.
The strength of the M-O bond tends to increase with the charge and decrease as the size of the metal ion increases. In fact there is a very good linear correlation between hydration enthalpy and the ratio of charge squared to ionic radius, z 2 /r. [4] For ions in solution Shannon's "effective ionic radius" is the measure most often used. [5]
In condensed matter physics and inorganic chemistry, the cation-anion radius ratio can be used to predict the crystal structure of an ionic compound based on the relative size of its atoms. It is defined as the ratio of the ionic radius of the positively charged cation to the ionic radius of the negatively charged anion in a cation-anion ...