enow.com Web Search

  1. Ads

    related to: definition of assertion in geometry problems

Search results

  1. Results from the WOW.Com Content Network
  2. Judgment (mathematical logic) - Wikipedia

    en.wikipedia.org/wiki/Judgment_(mathematical_logic)

    In general, a judgment may be any inductively definable assertion in the metatheory. Judgments are used in formalizing deduction systems: a logical axiom expresses a judgment, premises of a rule of inference are formed as a sequence of judgments, and their conclusion is a judgment as well (thus, hypotheses and conclusions of proofs are judgments).

  3. Axiom - Wikipedia

    en.wikipedia.org/wiki/Axiom

    The precise definition varies across fields of study. In classic philosophy, an axiom is a statement that is so evident or well-established, that it is accepted without controversy or question. [3] In modern logic, an axiom is a premise or starting point for reasoning. [4] In mathematics, an axiom may be a "logical axiom" or a "non-logical axiom".

  4. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    To a system of points, straight lines, and planes, it is impossible to add other elements in such a manner that the system thus generalized shall form a new geometry obeying all of the five groups of axioms. In other words, the elements of geometry form a system which is not susceptible of extension, if we regard the five groups of axioms as valid.

  5. Well-defined expression - Wikipedia

    en.wikipedia.org/wiki/Well-defined_expression

    Despite these subtle logical problems, it is quite common to use the term definition (without apostrophes) for "definitions" of this kind, for three reasons: It provides a handy shorthand of the two-step approach. The relevant mathematical reasoning (i.e., step 2) is the same in both cases. In mathematical texts, the assertion is "up to 100%" true.

  6. Theorem - Wikipedia

    en.wikipedia.org/wiki/Theorem

    The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.

  7. Foundations of mathematics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_mathematics

    These problems were also studied by mathematicians, and this led to establish mathematical logic as a new area of mathematics, consisting of providing mathematical definitions to logics (sets of inference rules), mathematical and logical theories, theorems, and proofs, and of using mathematical methods to prove theorems about these concepts.

  8. Mathematical problem - Wikipedia

    en.wikipedia.org/wiki/Mathematical_problem

    A mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics. This can be a real-world problem, such as computing the orbits of the planets in the solar system, or a problem of a more abstract nature, such as Hilbert's problems .

  9. Hilbert's fourth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_fourth_problem

    In mathematics, Hilbert's fourth problem in the 1900 list of Hilbert's problems is a foundational question in geometry.In one statement derived from the original, it was to find — up to an isomorphism — all geometries that have an axiomatic system of the classical geometry (Euclidean, hyperbolic and elliptic), with those axioms of congruence that involve the concept of the angle dropped ...

  1. Ads

    related to: definition of assertion in geometry problems