Search results
Results from the WOW.Com Content Network
The Cornforth reagent is a strong oxidizing agent which can convert primary alcohols to aldehydes and secondary alcohols to ketones, both as a solution or suspension. This application was first mentioned in 1969, but fully developed only in 1979 by E. J. Corey and G. Schmidt.
Tollens' test for aldehyde: left side positive (silver mirror), right side negative Ball-and-stick model of the diamminesilver(I) complex. Tollens' reagent (chemical formula ()) is a chemical reagent used to distinguish between aldehydes and ketones along with some alpha-hydroxy ketones which can tautomerize into aldehydes.
In monometallic complexes, aldehydes and ketones can bind to metals in either of two modes, η 1-O-bonded and η 2-C,O-bonded. These bonding modes are sometimes referred to sigma- and pi-bonded. These forms may sometimes interconvert. The sigma bonding mode is more common for higher valence, Lewis-acidic metal centers (e.g., Zn 2+). [1]
The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. [1] It was first described by Eduard Buchner and Theodor Curtius in 1885 [2] and later by Fritz Schlotterbeck in 1907. [3]
In organic chemistry, the Claisen–Schmidt condensation is the reaction between an aldehyde or ketone having an α-hydrogen with an aromatic carbonyl compound lacking an α-hydrogen. It can be considered as a specific variation of the aldol condensation .
The Stobbe condensation entails the reaction of an aldehyde or ketone with an ester of succinic acid to generate alkylidene succinic acid or related derivatives. [1] The reaction consumes one equivalent of metal alkoxide. Commonly, diethylsuccinate is a component of the reaction. The usual product is salt of the half-ester.
Typically the more α substituted a ketone is, the more likely the reaction will yield products in this way. [5] [6] The abstraction of an α-proton from the carbonyl fragment may form a ketene and an alkane. The abstraction of a β-proton from the alkyl fragment may form an aldehyde and an alkene. Norrish type I reaction
In organic chemistry, the Schmidt reaction is an organic reaction in which an azide reacts with a carbonyl derivative, usually an aldehyde, ketone, or carboxylic acid, under acidic conditions to give an amine or amide, with expulsion of nitrogen.