Search results
Results from the WOW.Com Content Network
The general formula for the kinetic energy is =, where v is the velocity of the bullet and m is the mass of the bullet. Although both mass and velocity contribute to the muzzle energy, the muzzle energy is proportional to the mass while proportional to the square of the velocity. The velocity of the bullet is a more important determinant of ...
Taylor himself acknowledged this, stating "in the case of soft-skinned non-dangerous game, such as is generally shot at medium to long ranges, theoretical mathematical energy may possibly prove a more reliable guide" and that his formula was designed to measure a cartridge's performance against the large, thick skinned, big boned elephant.
Since the mass of the bullet is much less than that of the shooter there is more kinetic energy transferred to the bullet than to the shooter. Once discharged from the weapon, the bullet's energy decays throughout its flight, until the remainder is dissipated by colliding with a target (e.g. deforming the bullet and target).
A ballistic pendulum is a device for measuring a bullet's momentum, from which it is possible to calculate the velocity and kinetic energy. Ballistic pendulums have been largely rendered obsolete by modern chronographs , which allow direct measurement of the projectile velocity.
The rearward energy of the firearm is the free recoil and the forward energy of the bullet is the muzzle energy. The concept of free recoil comes from the tolerability of gross recoil energy. Trying to figure the net recoil energy of a firearm (also known as felt recoil) is a futile endeavor. Even if the recoil energy loss can be calculated ...
The formula for calculating the ballistic coefficient for small and large arms projectiles only is as follows: = [2] where: C b,projectile, ballistic coefficient as used in point mass trajectory from the Siacci method (less than 20 degrees). [3] m, mass of bullet
Mifflin-St Jeor equation. Harris-Benedict equation. Katch-McArdle equation. Generally, TDEE calculators estimate BMR based on a person’s height, body weight, age, and gender assigned at birth ...
Miller twist rule is a mathematical formula derived by American physical chemist and historian of science Donald G. Miller (1927-2012) to determine the rate of twist to apply to a given bullet to provide optimum stability using a rifled barrel. [1]