Search results
Results from the WOW.Com Content Network
Engines with higher efficiency have more energy leave as mechanical motion and less as waste heat. Some waste heat is essential: it guides heat through the engine, much as a water wheel works only if there is some exit velocity (energy) in the waste water to carry it away and make room for more water. Thus all heat engines need cooling to operate.
If plain water is left to freeze in the block of an engine the water can expand as it freezes. This effect can cause severe internal engine damage due to the expanding of the ice. Development in high-performance aircraft engines required improved coolants with higher boiling points, leading to the adoption of glycol or water-glycol mixtures ...
The determination of a fluid's thermal stability is often based on tests such as ASTM D6743, which assess degradation products formed under thermal stress. [1] Viscosity: The viscosity of a fluid affects its flow characteristics and pumping costs. Lower viscosity fluids are easier to pump and circulate within a system.
A coolant is a substance, typically liquid, that is used to reduce or regulate the temperature of a system. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, chemically inert and neither causes nor promotes corrosion of the cooling system.
The choice of working fluids is known to have a significant impact on the thermodynamic as well as economic performance of the cycle. A suitable fluid must exhibit favorable physical, chemical, environmental, safety and economic properties such as low specific volume (high density), viscosity, toxicity, flammability, ozone depletion potential (ODP), global warming potential (GWP) and cost, as ...
In their traditionally popular two-stroke and increasingly popular four-stroke forms, currently produced single-cylinder methanol-fueled glow engines are the usual choice for radio controlled aircraft for recreational use, for engine sizes that can range from 0.8 cm 3 (0.049 cu.in.) to as large as 25 to 32 cm 3 (1.5-2.0 cu.in) displacement, and ...
For premium support please call: 800-290-4726 more ways to reach us
Fluid mechanics can further be divided into fluid statics, the study of fluids at rest, and fluid dynamics, the study of fluids in motion. Some of its more interesting concepts include momentum and reactive forces in fluid flow and fluid machinery theory and performance. Sections include: Fluid flow and continuity; Momentum in fluids