enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    where () = =, …, and () =, …, are constraints that are required to be satisfied (these are called hard constraints), and () is the objective function that needs to be optimized subject to the constraints. In some problems, often called constraint optimization problems, the objective function is actually the sum of cost functions, each of ...

  3. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.

  4. Constrained least squares - Wikipedia

    en.wikipedia.org/wiki/Constrained_least_squares

    In constrained least squares one solves a linear least squares problem with an additional constraint on the solution. [ 1 ] [ 2 ] This means, the unconstrained equation X β = y {\displaystyle \mathbf {X} {\boldsymbol {\beta }}=\mathbf {y} } must be fit as closely as possible (in the least squares sense) while ensuring that some other property ...

  5. Chance constrained programming - Wikipedia

    en.wikipedia.org/wiki/Chance_constrained_programming

    A general chance constrained optimization problem can be formulated as follows: (,,) (,,) =, {(,,)}Here, is the objective function, represents the equality constraints, represents the inequality constraints, represents the state variables, represents the control variables, represents the uncertain parameters, and is the confidence level.

  6. Constraint programming - Wikipedia

    en.wikipedia.org/wiki/Constraint_programming

    A constraint optimization problem (COP) is a constraint satisfaction problem associated to an objective function. An optimal solution to a minimization (maximization) COP is a solution that minimizes (maximizes) the value of the objective function. During the search of the solutions of a COP, a user can wish for:

  7. Constraint satisfaction problem - Wikipedia

    en.wikipedia.org/.../Constraint_satisfaction_problem

    The classic model of Constraint Satisfaction Problem defines a model of static, inflexible constraints. This rigid model is a shortcoming that makes it difficult to represent problems easily. [ 33 ] Several modifications of the basic CSP definition have been proposed to adapt the model to a wide variety of problems.

  8. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions.Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.

  9. Frank–Wolfe algorithm - Wikipedia

    en.wikipedia.org/wiki/Frank–Wolfe_algorithm

    The Frank–Wolfe algorithm is an iterative first-order optimization algorithm for constrained convex optimization.Also known as the conditional gradient method, [1] reduced gradient algorithm and the convex combination algorithm, the method was originally proposed by Marguerite Frank and Philip Wolfe in 1956. [2]