enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    As mentioned above, the cube has eight vertices, twelve edges, and six faces; each element in a matrix's diagonal is denoted as 8, 12, and 6. The first column of the middle row indicates that there are two vertices in (i.e., at the extremes of) each edge, denoted as 2; the middle column of the first row indicates that three edges meet at each ...

  3. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  4. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    The eight vertices of a cube have the coordinates (±1, ±1, ±1). The coordinates of the 12 additional vertices are (0, ±(1 + h), ±(1 − h 2)), (±(1 + h), ±(1 − h 2), 0) and (±(1 − h 2), 0, ±(1 + h)). h is the height of the wedge-shaped "roof" above the faces of that cube with edge length 2.

  5. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    The 5 Platonic solids are called a tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron with 4, 6, 8, 12, and 20 sides respectively. The regular hexahedron is a cube . Table of polyhedra

  6. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces. For example, a cube has 8 vertices and 6 faces, and hence 12 edges.

  7. Cuboctahedron - Wikipedia

    en.wikipedia.org/wiki/Cuboctahedron

    A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron , i.e., an Archimedean solid that is not only vertex-transitive but also edge-transitive . [ 1 ]

  8. Archimedean solid - Wikipedia

    en.wikipedia.org/wiki/Archimedean_solid

    An example is the rhombicuboctahedron, constructed by separating the cube or octahedron's faces from the centroid and filling them with squares. [8] Snub is a construction process of polyhedra by separating the polyhedron faces, twisting their faces in certain angles, and filling them up with equilateral triangles.

  9. List of Johnson solids - Wikipedia

    en.wikipedia.org/wiki/List_of_Johnson_solids

    The points, lines, and polygons of a polyhedron are referred to as its vertices, edges, and faces, respectively. [1] A polyhedron is considered to be convex if: [2] The shortest path between any two of its vertices lies either within its interior or on its boundary. None of its faces are coplanar—they do not share the same plane and do not ...