Search results
Results from the WOW.Com Content Network
It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry. ... 7: 12 5 / 2 }+20{6} ...
Therefore, the circumradius of this rhombicosidodecahedron is the common distance of these points from the origin, namely √ φ 6 +2 = √ 8φ+7 for edge length 2. For unit edge length, R must be halved, giving R = √ 8φ+7 / 2 = √ 11+4 √ 5 / 2 ≈ 2.233.
The eight vertices of a cube have the coordinates (±1, ±1, ±1). The coordinates of the 12 additional vertices are (0, ±(1 + h), ±(1 − h 2)), (±(1 + h), ±(1 − h 2), 0) and (±(1 − h 2), 0, ±(1 + h)). h is the height of the wedge-shaped "roof" above the faces of that cube with edge length 2.
3D model of a rhombic dodecahedron. In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces.It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron.
In geometry, a heptagon or septagon is a seven-sided polygon or 7-gon.. The heptagon is sometimes referred to as the septagon, using "sept-" (an elision of septua-, a Latin-derived numerical prefix, rather than hepta-, a Greek-derived numerical prefix; both are cognate) together with the Greek suffix "-agon" meaning angle.
In the above coordinates, the first 12 vertices form a regular icosahedron, the next 20 vertices (those with R) form a regular dodecahedron, and the last 30 vertices (those with S) form an icosidodecahedron. Normalizing all vertices to the unit sphere gives a spherical disdyakis triacontahedron
3D model of a truncated icosahedron In geometry , the truncated icosahedron is a polyhedron that can be constructed by truncating all of the regular icosahedron 's vertices. Intuitively, it may be regarded as footballs (or soccer balls) that are typically patterned with white hexagons and black pentagons.
There are 34 topologically distinct convex heptahedra, excluding mirror images. [2] ( Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces.)