Search results
Results from the WOW.Com Content Network
The four quadrants of a Cartesian coordinate system. The axes of a two-dimensional Cartesian system divide the plane into four infinite regions, called quadrants, each bounded by two half-axes. The axes themselves are, in general, not part of the respective quadrants.
The quadrants may be named or numbered in various ways, but the quadrant where all coordinates are positive is usually called the first quadrant. If the coordinates of a point are (x, y), then its distances from the X-axis and from the Y-axis are | y | and | x |, respectively; where | · | denotes the absolute value of a number.
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
The horizontal plane shows the four quadrants between x- and y-axis. (Vertex numbers are little-endian balanced ternary.) An octant in solid geometry is one of the eight divisions of a Euclidean three-dimensional coordinate system defined by the signs of the coordinates. It is analogous to the two-dimensional quadrant and the one-dimensional ...
Cartesian plane with marked points (signed ordered pairs of coordinates). For any point, the abscissa is the first value (x coordinate), and the ordinate is the second value (y coordinate).
A quadratrix in the first quadrant (x, y) is a curve with y = ρ sin θ equal to the fraction of the quarter circle with radius r determined by the radius through the curve point. Since this fraction is 2 r θ π {\displaystyle {\frac {2r\theta }{\pi }}} , the curve is given by ρ ( θ ) = 2 r θ π sin θ {\displaystyle \rho (\theta ...
Alternatively, the conversion can be considered as two sequential rectangular to polar conversions: the first in the Cartesian xy plane from (x, y) to (R, φ), where R is the projection of r onto the xy-plane, and the second in the Cartesian zR-plane from (z, R) to (r, θ).