Search results
Results from the WOW.Com Content Network
Dopamine receptors are implicated in many neurological processes, including motivational and incentive salience, cognition, memory, learning, and fine motor control, as well as modulation of neuroendocrine signaling. Abnormal dopamine receptor signaling and dopaminergic nerve function is implicated in several neuropsychiatric disorders. [2]
At the earliest stage, genetic differences that alter the expression of dopamine receptors in the brain can predict whether a person will find stimulants appealing or aversive. [115] Consumption of stimulants produces increases in brain dopamine levels that last from minutes to hours. [104]
The dopamine neurons of the dopaminergic pathways synthesize and release the neurotransmitter dopamine. [2] [3] Enzymes tyrosine hydroxylase and dopa decarboxylase are required for dopamine synthesis. [4] These enzymes are both produced in the cell bodies of dopamine neurons. Dopamine is stored in the cytoplasm and vesicles in axon terminals.
Non-ergoline dopamine receptor agonists have higher binding affinity to dopamine D 3-receptors than dopamine D 2-receptors. This binding affinity is related to D 2 and D 3 receptor homology, the homology between them has a high degree of sequence and is closest in their transmembrane domains, were they share around 75% of the amino acid. [37]
Dopamine receptors are a class of G protein-coupled receptors that are prominent in the vertebrate central nervous system (CNS) and are implicated in many neurological processes, including motivational and incentive salience, cognition, memory, learning, and fine motor control, as well as modulation of neuroendocrine signaling.
D 1 receptor has a high degree of structural homology to another dopamine receptor, D 5, and they both bind similar drugs. [13] As a result, none of the known orthosteric ligands is selective for the D 1 vs. the D 5 receptor, but the benzazepines generally are more selective for the D 1 and D 5 receptors versus the D 2-like family. [12]
Dopamine receptor D 2, also known as D 2 R, is a protein that, in humans, is encoded by the DRD2 gene.After work from Paul Greengard's lab had suggested that dopamine receptors were the site of action of antipsychotic drugs, several groups, including those of Solomon H. Snyder and Philip Seeman used a radiolabeled antipsychotic drug to identify what is now known as the dopamine D 2 receptor. [5]
Differences in the VNTR have been shown to affect the basal level of expression of the transporter; consequently, researchers have looked for associations with dopamine-related disorders. [29] Nurr1, a nuclear receptor that regulates many dopamine-related genes, can bind the promoter region of this gene and induce expression. [30]