Search results
Results from the WOW.Com Content Network
The chloralkali process (also chlor-alkali and chlor alkali) is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide (caustic soda), [ 1 ] which are commodity chemicals required by industry.
The Downs cell uses a carbon anode and an iron cathode.The electrolyte is sodium chloride that has been heated to the liquid state. Although solid sodium chloride is a poor conductor of electricity, when molten the sodium and chloride ions are mobilized, which become charge carriers and allow conduction of electric current.
The first type, shown on the right and left of the diagram, uses an electrolyte of sodium chloride solution, a graphite anode (A), and a mercury cathode (M). The other type of cell, shown in the center of the diagram, uses an electrolyte of sodium hydroxide solution, a mercury anode (M), and an iron cathode (D). The mercury electrode is common ...
There are three industrial methods for the extraction of chlorine by electrolysis of chloride solutions, all proceeding according to the following equations: Cathode: 2 H + (aq) + 2 e − → H 2 (g) Anode: 2 Cl − (aq) → Cl 2 (g) + 2 e −. Overall process: 2 NaCl (or KCl) + 2 H 2 O → Cl 2 + H 2 + 2 NaOH (or KOH)
A low voltage DC current is applied, electrolysis happens producing sodium hypochlorite and hydrogen gas (H 2). The solution travels to a tank that separates the hydrogen gas based on its low density. [1] Only water and sodium chloride are used. The simplified chemical reaction is: NaCl + H 2 O + energy → NaOCl + H 2 [citation needed]
In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell .
The exact relationship depends on the nature of the reactions at the two electrodes. For the electrolysis of aqueous copper(II) sulfate (CuSO 4) as an example, with Cu 2+ (aq) and SO 2− 4 (aq) ions, the cathode reaction is the reduction Cu 2+ (aq) + 2 e − → Cu(s) and the anode reaction is the corresponding oxidation of Cu to Cu 2+.
Diagram of Castner process apparatus. The Castner process is a process for manufacturing sodium metal by electrolysis of molten sodium hydroxide at approximately 330 °C. Below that temperature, the melt would solidify; above that temperature, the molten sodium would start to dissolve in the melt.