enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for ⁡ >, and its analytic continuation elsewhere.

  3. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be ⁠ 1 / 2 ⁠. In other words, all known nontrivial zeros of the Riemann zeta are of the form z = ⁠ 1 / 2 ⁠ + yi where y is a real number.

  4. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    Riemann zeta function ζ(s) in the complex plane. The color of a point s encodes the value of ζ ( s ): colors close to black denote values close to zero, while hue encodes the value's argument . In mathematics , analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers ...

  5. Dirichlet eta function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_eta_function

    The zeros of the eta function include all the zeros of the zeta function: the negative even integers (real equidistant simple zeros); the zeros along the critical line, none of which are known to be multiple and over 40% of which have been proven to be simple, and the hypothetical zeros in the critical strip but not on the critical line, which if they do exist must occur at the vertices of ...

  6. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series = = = + + +Leonhard Euler considered this series in the 1730s for real values of s, in conjunction with his solution to the Basel problem.

  7. Dirichlet series - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_series

    The most famous example of a Dirichlet series is = =,whose analytic continuation to (apart from a simple pole at =) is the Riemann zeta function.. Provided that f is real-valued at all natural numbers n, the respective real and imaginary parts of the Dirichlet series F have known formulas where we write +:

  8. Zeta distribution - Wikipedia

    en.wikipedia.org/wiki/Zeta_distribution

    where ζ(s) is the Riemann zeta function (which is undefined for s = 1). The multiplicities of distinct prime factors of X are independent random variables. The Riemann zeta function being the sum of all terms for positive integer k, it appears thus as the normalization of the Zipf distribution. The terms "Zipf distribution" and the "zeta ...

  9. Random minimum spanning tree - Wikipedia

    en.wikipedia.org/wiki/Random_minimum_spanning_tree

    More precisely, this constant tends in the limit (as n goes to infinity) to ζ(3)/D, where ζ is the Riemann zeta function and ζ(3) ≈ 1.202 is Apéry's constant. For instance, for edge weights that are uniformly distributed on the unit interval, the derivative is D = 1, and the limit is just ζ(3). [1]