enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Continuous or discrete variable - Wikipedia

    en.wikipedia.org/wiki/Continuous_or_discrete...

    In probability theory and statistics, the probability distribution of a mixed random variable consists of both discrete and continuous components. A mixed random variable does not have a cumulative distribution function that is discrete or everywhere-continuous. An example of a mixed type random variable is the probability of wait time in a queue.

  3. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    Furthermore, it covers distributions that are neither discrete nor continuous nor mixtures of the two. An example of such distributions could be a mix of discrete and continuous distributions—for example, a random variable that is 0 with probability 1/2, and takes a random value from a normal distribution with probability 1/2.

  4. Discrete Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Discrete_Weibull_distribution

    The Discrete Weibull Distribution, first introduced by Toshio Nakagawa and Shunji Osaki, is a discrete analog of the continuous Weibull distribution, predominantly used in reliability engineering. It is particularly applicable for modeling failure data measured in discrete units like cycles or shocks.

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.

  6. Random variable - Wikipedia

    en.wikipedia.org/wiki/Random_variable

    A mixed random variable is a random variable whose cumulative distribution function is neither discrete nor everywhere-continuous. [10] It can be realized as a mixture of a discrete random variable and a continuous random variable; in which case the CDF will be the weighted average of the CDFs of the component variables. [10]

  7. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.

  8. Singular distribution - Wikipedia

    en.wikipedia.org/wiki/Singular_distribution

    On the other hand, neither does it have a probability density function, since the Lebesgue integral of any such function would be zero. In general, distributions can be described as a discrete distribution (with a probability mass function), an absolutely continuous distribution (with a probability density), a singular distribution (with ...

  9. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    It is possible to represent certain discrete random variables as well as random variables involving both a continuous and a discrete part with a generalized probability density function using the Dirac delta function. (This is not possible with a probability density function in the sense defined above, it may be done with a distribution.)