Search results
Results from the WOW.Com Content Network
During the early development of electrochemistry, researchers used the normal hydrogen electrode as their standard for zero potential. This was convenient because it could actually be constructed by "[immersing] a platinum electrode into a solution of 1 N strong acid and [bubbling] hydrogen gas through the solution at about 1 atm pressure".
Both the oxidation and reduction steps are pH dependent. Figure 1 shows the standard potentials at pH 0 (strongly acidic) as referenced to the normal hydrogen electrode (NHE). 2 half reactions (at pH = 0) Oxidation 2H 2 O → 4H + + 4e − + O 2 E° = +1.23 V vs. NHE Reduction 4H + + 4e − → 2H 2 E° = 0.00 V vs. NHE
Such tabulations are referenced to the standard hydrogen electrode (SHE). The standard hydrogen electrode undergoes the reaction 2 H + (aq) + 2 e − → H 2. which is shown as a reduction but, in fact, the SHE can act as either the anode or the cathode, depending on the relative oxidation/reduction potential of the other electrode/electrolyte ...
Electro-oxidation (EO or EOx), also known as anodic oxidation or electrochemical oxidation (EC), is a technique used for wastewater treatment, mainly for industrial effluents, and is a type of advanced oxidation process (AOP). [1] The most general layout comprises two electrodes, operating as anode and cathode, connected to a power source.
The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: Temperature 298.15 K (25.00 °C; 77.00 °F); Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species; Unit activity for each solvent and pure solid or liquid species; and
the electrode potential for the reduction producing hydrogen is −0.41 V, the electrode potential for the oxidation producing oxygen is +0.82 V. Comparable figures calculated in a similar way, for 1 M zinc bromide, ZnBr 2, are −0.76 V for the reduction to Zn metal and +1.10 V for the oxidation producing bromine.
The standard hydrogen electrode (SHE), with [ H +] = 1 M works thus at a pH = 0. At pH = 7, when [ H +] = 10 −7 M, the reduction potential of H + differs from zero because it depends on pH. Solving the Nernst equation for the half-reaction of reduction of two protons into hydrogen gas gives: 2 H + + 2 e − ⇌ H 2
In this process, the reaction is broken into two half-reactions which occur at separate electrodes. In this situation the reactant's energy is directly converted to electricity. [36] [37] The standard reduction potential of hydrogen is defined as 0V, and frequently referred to as the standard hydrogen electrode (SHE). [38]