enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements.

  3. B2FH paper - Wikipedia

    en.wikipedia.org/wiki/B2FH_paper

    The B 2 FH paper reviewed stellar nucleosynthesis theory and supported it with astronomical and laboratory data. It identified nucleosynthesis processes that are responsible for producing the elements heavier than iron and explained their relative abundances. The paper became highly influential in both astronomy and nuclear physics.

  4. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    Supernova nucleosynthesis within exploding stars is largely responsible for the elements between oxygen and rubidium: from the ejection of elements produced during stellar nucleosynthesis; through explosive nucleosynthesis during the supernova explosion; and from the r-process (absorption of multiple neutrons) during the explosion.

  5. s-process - Wikipedia

    en.wikipedia.org/wiki/S-process

    The s-process is believed to occur mostly in asymptotic giant branch stars, seeded by iron nuclei left by a supernova during a previous generation of stars. In contrast to the r-process which is believed to occur over time scales of seconds in explosive environments, the s-process is believed to occur over time scales of thousands of years, passing decades between neutron captures.

  6. Triple-alpha process - Wikipedia

    en.wikipedia.org/wiki/Triple-alpha_process

    This creates a situation in which stellar nucleosynthesis produces large amounts of carbon and oxygen, but only a small fraction of those elements are converted into neon and heavier elements. Oxygen and carbon are the main "ash" of helium-4 burning.

  7. Alpher–Bethe–Gamow paper - Wikipedia

    en.wikipedia.org/wiki/Alpher–Bethe–Gamow_paper

    Today, nucleosynthesis is widely considered to have taken place in two stages: formation of hydrogen and helium according to the Alpher–Bethe–Gamow theory, and stellar nucleosynthesis of higher elements according to Bethe and Hoyle's later theories.

  8. Cosmic ray spallation - Wikipedia

    en.wikipedia.org/wiki/Cosmic_ray_spallation

    Cosmic ray spallation, also known as the x-process, is a set of naturally occurring nuclear reactions causing nucleosynthesis; it refers to the formation of chemical elements from the impact of cosmic rays on an object.

  9. Supernova nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Supernova_nucleosynthesis

    Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...