Search results
Results from the WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m .
Perl, Python (only modern versions) choose the remainder with the same sign as the divisor d. [6] Scheme offer two functions, remainder and modulo – Ada and PL/I have mod and rem, while Fortran has mod and modulo; in each case, the former agrees in sign with the dividend, and the latter with the divisor.
The parentheses mean that (mod m) applies to the entire equation, not just to the right-hand side (here, b). This notation is not to be confused with the notation b mod m (without parentheses), which refers to the modulo operation, the remainder of b when divided by m: that is, b mod m denotes the unique integer r such that 0 ≤ r < m and r ...
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
Remainder(a, b): the leftover if b does not divide a "evenly". Also called MOD(a, b) a = b: sg | a − b | (Kleene's convention was to represent true by 0 and false by 1; presently, especially in computers, the most common convention is the reverse, namely to represent true by 1 and false by 0, which amounts to changing sg into ~sg here and in ...
Modular multiplicative inverses are used to obtain a solution of a system of linear congruences that is guaranteed by the Chinese Remainder Theorem. For example, the system X ≡ 4 (mod 5) X ≡ 4 (mod 7) X ≡ 6 (mod 11) has common solutions since 5,7 and 11 are pairwise coprime. A solution is given by
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.