Search results
Results from the WOW.Com Content Network
A review and critique of data mining process models in 2009 called the CRISP-DM the "de facto standard for developing data mining and knowledge discovery projects." [16] Other reviews of CRISP-DM and data mining process models include Kurgan and Musilek's 2006 review, [8] and Azevedo and Santos' 2008 comparison of CRISP-DM and SEMMA. [9]
While the analysis of educational data is not itself a new practice, recent advances in educational technology, including the increase in computing power and the ability to log fine-grained data about students' use of a computer-based learning environment, have led to an increased interest in developing techniques for analyzing the large amounts of data generated in educational settings.
where 'credit_risk_model' is the model name, built for the express purpose of classifying future customers' 'credit_risk', based on training data provided in the table 'credit_card_data', each case distinguished by a unique 'customer_id', with the rest of the model parameters specified through the table 'credit_risk_model_settings'. Oracle Data ...
For exchanging the extracted models—in particular for use in predictive analytics—the key standard is the Predictive Model Markup Language (PMML), which is an XML-based language developed by the Data Mining Group (DMG) and supported as exchange format by many data mining applications. As the name suggests, it only covers prediction models ...
Table 4 shows association rule examples where the minimum threshold for confidence is 0.5 (50%). Any data that does not have a confidence of at least 0.5 is omitted. Generating thresholds allow for the association between items to become stronger as the data is further researched by emphasizing those that co-occur the most.
Text mining, text data mining (TDM) or text analytics is the process of deriving high-quality information from text.It involves "the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources."
The Modify phase contains methods to select, create and transform variables in preparation for data modeling. Model. In the Model phase the focus is on applying various modeling (data mining) techniques on the prepared variables in order to create models that possibly provide the desired outcome. Assess. The last phase is Assess.
The quality of the output model depends on the soundness of the model. A number of techniques such as alpha miner, genetic miner, work on the basis of converting an event log into a workflow model, however, they do not produce models that are sound all the time. Inductive miner relies on building a directly follows graph from event log and ...