enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hemicube (geometry) - Wikipedia

    en.wikipedia.org/wiki/Hemicube_(geometry)

    The hemicube should not be confused with the demicube – the hemicube is a projective polyhedron, while the demicube is an ordinary polyhedron (in Euclidean space). While they both have half the vertices of a cube, the hemicube is a quotient of the cube, while the vertices of the demicube are a subset of the vertices of the cube.

  3. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; [1] a three-dimensional solid bounded exclusively by faces is a polyhedron. A face can be finite like a polygon or circle, or infinite like a half-plane or plane.

  4. List of uniform polyhedra by vertex figure - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra...

    The relations can be made apparent by examining the vertex figures obtained by listing the faces adjacent to each vertex (remember that for uniform polyhedra all vertices are the same, that is vertex-transitive). For example, the cube has vertex figure 4.4.4, which is to say, three adjacent square faces. The possible faces are 3 - equilateral ...

  5. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

  6. Projective polyhedron - Wikipedia

    en.wikipedia.org/wiki/Projective_polyhedron

    The hemi-cube is a regular projective polyhedron with 3 square faces, 6 edges, and 4 vertices. The best-known examples of projective polyhedra are the regular projective polyhedra, the quotients of the centrally symmetric Platonic solids, as well as two infinite classes of even dihedra and hosohedra: [4] Hemi-cube, {4,3}/2; Hemi-octahedron, {3,4}/2

  7. Triangular cupola - Wikipedia

    en.wikipedia.org/wiki/Triangular_cupola

    [1] [2] The dihedral angle between each triangle and the hexagon is approximately 70.5°, that between each square and the hexagon is 54.7°, and that between square and triangle is 125.3°. [3] A convex polyhedron in which all of the faces are regular is a Johnson solid, and the triangular cupola is among them, enumerated as the third Johnson ...

  8. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    The elements of the set correspond to the vertices, edges, faces and so on of the polytope: vertices have rank 0, edges rank 1, etc. with the partially ordered ranking corresponding to the dimensionality of the geometric elements. The empty set, required by set theory, has a rank of −1 and is sometimes said to correspond to the null polytope.

  9. N-dimensional polyhedron - Wikipedia

    en.wikipedia.org/wiki/N-dimensional_polyhedron

    A subset F of a polyhedron P is called a face of P if there is a halfspace H (defined by some inequality a 1 T x ≤ b 1) such that H contains P and F is the intersection of H and P. [3]: 9 If a face contains a single point {v}, then v is called a vertex of P. If a face F is nonempty and n-1 dimensional, then F is called a facet of P.